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a b s t r a c t

Friction-induced self-excited linear vibration is often governed by a second-order

matrix differential equation of motion with an asymmetric stiffness matrix. The

asymmetric terms are product of friction coefficient and the normal stiffness at the

contact interface. When the friction coefficient becomes high enough, the resultant

eigenvalues (poles) coalesce (when viscous damping is low).

This short paper presents a receptance-based inverse method for assigning complex

poles to second-order asymmetric systems through (active) state-feedback control of a

combination of active stiffness, active damping and active mass, which is capable of

assigning negative real parts to stabilise an unstable system.

& 2009 Elsevier Ltd. All rights reserved.
1. Introduction

Friction dissipates heat energy and hence is a major damping mechanism. However, it is also capable of doing the
opposite, that is, exciting and sustaining vibration [1,2]. For example, brakes can generate all sorts of noise as a result of
friction-induced vibration [3]. Brake noise and other friction-related noise were reviewed by Akay [4]. Friction-induced
vibration is very difficult to mitigate as it depends on and is sensitive to a number of factors [1,5,6].

Discretised linear or linearised models of friction-induced vibration are governed by a second-order matrix differential
equation with an asymmetric stiffness matrix. Two typical models were discussed in Ref. [7]. For both models, when
friction coefficient increases to a certain high enough value, the imaginary parts (frequencies) of two conjugate complex
pairs of eigenvalues coalesce and the real part of one pair becomes positive [8]. As a result, the system becomes unstable
(flutter instability occurs). Viscous damping in asymmetric systems is found to be mostly destabilising [9,10], contrary to
the intuition. Therefore, viscous damping should be included in the governing equation of friction-induced vibration.
Incidentally, von Wagner et al. [11] discussed several interesting ways of introducing friction into a dynamic model,
including their own.

One passive means of vibration control is to assign desired eigenvalues through structural modifications [12]. They have
been widely used for symmetric dynamic systems [13,14]. However, it is well known that passive vibration control has
inherent limitations. These include undesirable changes of unassigned eigenvalues and the restriction that the rank of
modifications must not be smaller than the number of assigned frequencies and zeros. Active control has been shown to be
able to overcome these difficulties, as shown, for example, in Refs. [15–19]. Ram and Mottershead were the first
ll rights reserved.
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researchers to introduce a receptance-based inverse method to assign poles and zeros to symmetric systems through active
vibration control [20].

All the above-mentioned works dealt with symmetric systems, except [17] that requires knowledge of the system
matrices. There are many engineering problems whose stiffness matrices are asymmetric. Usually the asymmetry is
produced not by the structure itself alone, but by some external loads interacting with the structure, such as friction in
brake noise problems [2–6,21], airflow in aeroelastic flutter problems [22], geometrical coupling in hunting instability of
tracked vehicles (trains) [23], follower forces [24], or phase difference between two passes of the cutter in machining
causing chatter [25] (also with time delay), or general nonconservative forces on rotors [26].

Ouyang studied assignment of poles (complex eigenvalues) to linear friction-induced vibration through structural
modifications using a receptance-based inverse method [27]. By shifting the positive real parts of the complex poles to
negative values, an unstable system is stabilised. However, that work showed that it is difficult to assign complex poles to
an asymmetric system. Sometimes a solution cannot be found. Sometimes a solution is not physically feasible. Even if a
reasonable modification is found, sometimes it may turn out that some other assigned poles become unstable, which is
another weakness of passive vibration control.

In this paper, state-feedback control based on receptances of the symmetric part of the asymmetric systems is used to
assign complex poles of asymmetric systems. The real part of the complex poles is of particular interest as it concerns
instability of asymmetric dynamics systems. It is an extension to the work by Ram and Mottershead [20] on symmetric
dynamic systems. Active mass, active damping, and active stiffness are used. Only linear models are considered so that pole
assignment remains a valid approach. It is demonstrated that in principle the unstable vibration that easily occurs in
asymmetric systems can be suppressed by the right means of active control (active mass, active damping, or active
stiffness) with suitable gains.

2. Pole assignment by state-feedback

The poles of a structure (a symmetric system) with non-negative viscous damping are complex with non-positive real
parts. However, an asymmetric system with non-negative viscous damping can have complex poles with positive real parts
or even positive real poles, indicating flutter instability or divergence. There have been some works on active control of the
level of friction-induced brake noise [28,29], which are a different methodology from the inverse method of assigning
complex poles presented in this paper.

The Laplace transform of the second-order asymmetric systems being studied in this paper can be written as

ðMs2þCsþKþ
Xj

i ¼ 1

mikciEiÞxðsÞ ¼ pðsÞþbuðsÞ (1)

where M, C, and K are n�n symmetric mass, damping and stiffness matrices, mi, kci and Ei are the friction coefficient at the
ith degree-of-freedom, and its associated stiffness term and location, and there are j such asymmetric terms; p and x are,
respectively, the Laplace transforms of the external load vector and displacement vector, and b is the control force
distribution vector. Note that square matrix Ei has only one non-zero element, whose row corresponds to the tangential
degree-of-freedom and whose column corresponds to the normal degree-of-freedom of the same node at the friction
interface. For the purpose of demonstrating how to apply the method presented later in the paper, these friction-affected
degrees-of-freedom are arranged to be the last j degrees-of-freedom and correspond to the matrix block formed by the last
j rows and last j columns of the stiffness matrix.

For state-feedback, the single control input force uðsÞ ¼ �ðs2aTþsfT
þgTÞx, so that

½ðMþbaT
Þs2þðCþbfT

ÞsþðKþbgT
þ
Xj

i ¼ 1

mikciEiÞ�xðsÞ ¼ pðsÞ (2)

where a, f, and g may be called active mass, active damping and active stiffness vectors.
Multiplying both sides of Eq. (2) by the receptance matrix of the symmetric part of the asymmetric system,

HðsÞ ¼ ðKþsCþs2MÞ�1, yields

½IþHfbðas2þfsþgÞTþ
Xj

i ¼ 1

mikciEig�xðsÞ ¼HpðsÞ (3)

If the asymmetric stiffness terms are absent, that is, if it is a symmetric system (equivalent to taking mi as zero), Eq. (3) may
be re-written as

xðsÞ ¼ ĤðsÞpðsÞ (4)

where the closed-loop receptance matrix is (extended from Ref. [20])

ĤðsÞ ¼HðsÞ�
HðsÞbðgþsfþs2aÞTHðsÞ

1þðgþsfþs2aÞTHðsÞb
(5)
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In the derivation of Eq. (5), the Sherman–Morrison formula has been used to take advantage of the property of
bðgþsfþs2aÞT being a rank-one matrix.

For assignment of poles and zeros of a symmetric system, the following equations must be solved, respectively,
according to equations below (extended from Ref. [20]):

1þðgþsfþs2aÞTHðsÞb¼ 0 (6)

HðsÞð1þðgþsfþs2aÞTHðsÞbÞ�HðsÞbðgþsfþs2aÞTHðsÞ ¼ 0 (7)

However, when the asymmetric stiffness terms are present in Eq. (3), obviously the Sherman–Morrison formula (or
Sherman–Morrison–Woodbury formula) does not provide a neat formula for the closed-loop receptance matrix. Even
though Eq. (3) may be written formally as

xðsÞ ¼
adj½IþHfbðs2aþsfþgÞTþ

Pj
i�1 mikciEig�

det½IþHfbðs2aþsfþgÞTþ
Pj

i�1 mikciEig�
HpðsÞ (8)

this formal solution is not helpful as the closed-loop receptance matrix in Eq. (8) involves all n degrees-of-freedom and is
very expensive to compute.

A close look at the structure of these asymmetric stiffness terms, however, reveals that they together make up a very
low-rank sparse matrix. The rank is not greater than j, which is usually much smaller than n. For example, j=916 while
nffi180;000 in the finite element model of a vented disc brake studied in Ref. [21]. This property was exploited in the
structural modifications of asymmetric systems [27] and led to a system of simultaneous linear equations in only a small
number of relevant components of xðsÞ to be found, whose coefficient matrix is a function of s, mi and some elements of
H(s), and also has a low rank. This property allowed assignment of complex poles and critical points of asymmetric systems
[27] using passive control (which was partly successful), and will be shown in this paper to allow the assignment of
complex poles by active vibration control as well.

To adapt the idea of passive control of Ref. [27] for active control, Eq. (2) is re-arranged as

½Ms2þCsþKþbðs2aþsfþgÞTþ
Xj

i ¼ 1

mikciEi�xðsÞ ¼ ½Ĥ
�1
þ
Xj

i ¼ 1

mikciEi�xðsÞ ¼ pðsÞ (9)

Multiplying both sides of Eq. (9) by the closed-loop receptance matrix of the symmetric system, Ĥ, yields

½IþĤðsÞ
Xj

i ¼ 1

mikciEi�xðsÞ ¼ ĤðsÞpðsÞ (10)

Eq. (10) forms the basis of the receptance-based inverse method presented in this paper. The great strength of a
receptance-based method is that measured receptances at only a small number of relevant locations are needed [27] and a
theoretical (finite element) model, though useful, is not required [12] and hence the thorny issue of the modelling errors
can be avoided. Because Eq. (10) does not yield the explicit expression of the closed-loop receptance matrix for asymmetric
systems, it is believed to be useful to use specific examples to demonstrate the application of this method, in the next
section. The other advantage of this method is the use of some receptance elements of the symmetric system (referred to as
statically coupled system in Ref. [6]), which are often measured and available.

3. Application of the receptance-based inverse method

A simulated friction-induced vibration problem (slider–belt) is studied here and shown in Fig. 1 below. It is similar to
the model studied by Hoffmann et al. [8].

The system has three masses with m1 having a degree-of-freedom in the x (horizontal) direction, m3 having a degree-of-
freedom in the y (vertical) direction, and m2 having degrees-of-freedom in both directions. The belt moves at a constant
m2

m3

m1

kc

k1 k2

k3 k4

k5

n1 f1

c1 c0

y

x

Fig. 1. An asymmetric system of friction-induced vibration.
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speed. f1 and n1 are, respectively, the friction force and (pre-compression) normal force acting at the slider–belt interface.
The sliding friction at the slider–belt interface is governed by Coulomb friction whose static and kinetic friction coefficients
are taken to be the same. This is a simplification and avoids stick-slip vibration. M, C, K, and E corresponding to
displacement vector x¼ fx1 y3 x2 y2g

T are, respectively:

M¼

m1 0 0 0

0 m3 0 0

0 0 m2 0

0 0 0 m2

2
66664

3
77775; C¼

c1 0 �c1 0

0 0 0 0

�c1 0 c1 0

0 0 0 c0

2
66664

3
77775

K¼

k1þk2 0 �k2 0

0 k4þk5 0 �k4

�k2 0 k2þ0:5k3 �0:5k3

0 �k4 �0:5k3 k4þ0:5k3þkc

2
66664

3
77775; E¼

0 0 0 0

0 0 0 0

0 0 0 1

0 0 0 0

2
6664

3
7775

where mi ¼ 1 kg ði¼ 1;2;3Þ, ci ¼ 0:5 N s=m ði¼ 0;1Þ, ki ¼ 100 N=mði¼ 1;2;3;4;5Þ, and kc ¼ 2k1.
Using the bisection method and MATLAB polyeig function, the critical point of the open-loop system is found to be

mcr ¼ 0:3868, where the system becomes unstable (flutter instability). The proposed method is used below to assign poles
to the systems at various m values.

For this particular example, Eq. (10) becomes

1 0 0 mkcĥ13

0 1 0 mkcĥ23

0 0 1 mkcĥ33

0 0 0 1þmkcĥ43

2
666664

3
777775

x1

y3

x2

y2

8>>>><
>>>>:

9>>>>=
>>>>;
¼ Ĥp (11)

where ĥi3ði¼ 1;2;3;4Þ are all the elements in the third column of the closed-loop receptance matrix Ĥ. The complex poles s

of the asymmetric system must satisfy the equation below:

1þmkcĥ43ðsÞ ¼ 0 (12)

Substituting Eq. (5) into Eq. (12) and further manipulation of the resultant equation yields

½tTðsÞ stTðsÞ s2tTðsÞ�

g

f

a

8><
>:

9>=
>;¼�1�mkch43ðsÞ (13)

where

tðsÞ ¼ ½1þmkch43ðsÞ�HðsÞb�mkceT
4HðsÞbHðsÞe3 (14)

and ei (i=3, 4) is a vector whose elements are all zero, except its ith element which is one.
Eq. (1) has n pairs of complex poles. If all of them are to be assigned, substitution of them into Eq. (13) leads to 2�n

simultaneous equations, which are just enough to solve for n components of any two vectors out of a, f, and g. Better still,
additional equations, for example, for assigning zeros and/or modes, or of certain cost functions, may be set up to solve for
more than 2�n components of a, f, and g. This paper presents numerical results of only pole assignment with 2�n

components of a, f, and g.

3.1. Poles assignment using active damping and active stiffness

The poles to be assigned are �179i, �1713.5i, �1718i, �1722i for both the symmetric and asymmetric systems
with b¼ f0 0 1 1gT. Table 1 lists results of f and g for the symmetric system of m¼ 0. When they are substituted back into
Eq. (2) for m¼ 0, indeed the poles found are precisely those assigned ones. Actually, assignment of complex poles to
symmetric systems using active damping and active stiffness is always successful (please see examples in Ref. [30]).
Table 1
Active damping and stiffness vectors to assign poles �179i,�1713.5i,�1718i,�1722i with b={0 0 1 1}T at various values of friction coefficients.

m Active damping vector f Active stiffness vector g

0 {1.8 6.9 3.3 3.2}T {�77.0 110.7 40.9 150.4}T

0.3868 {2.9 5.7 5.7 0.8}T {�122.8 157.5 33.8 157.0}T

0.45 {3.2 5.3 6.5 0.1}T {�135.9 171.0 31.4 159.3}T

0.5 {3.4 5.0 7.2 �0.7}T {�148.3 183.7 28.9 161.7}T
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Table 2
Original and assigned poles at various values of friction coefficient with b={0 0 1 1}T.

Complex poles First pair Second pair Third pair Forth pair

Original (m=0) �0.01978.028i �0.047+12.341i �0.468716.539i �0.216720.233i

Assigned (m=0) �1.00079.000i �1.000713.500i �1.000718.000i �1.000722.000i

Original (m=0.3868) 0.00078.733i �0.053712.189i �0.509716.749i �0.188719.857i

Assigned (m=0.3868) �1.00079.000i �1.000713.500i �1.000718.000i �1.000722.000i

Original (m=0.45) 0.00478.852i �0.054712.159i �0.518716.789i �0.182719.789i

Assigned (m=0.45) �1.00079.000i �1.000713.500i �1.000718.000i �1.000722.000i

Original (m=0.5) 0.00778.946i �0.055712.134i �0.526716.823i �0.176719.734i

Assigned (m=0.5) �1.00079.000i �1.000713.500i �1.000718.000i �1.000722.000i

Table 3
Active damping and stiffness vectors to assign poles �179i,�1713.5i,�1718i,�1722i at m=0.5 with different actuator distributions.

Actuator distribution Active damping vector f Active stiffness vector g

b¼ f0 0 0 1gT f�17:9 9:2 �17:9 6:5gT f262:6 37:8 �243:3 192:3gT

b¼ f1 0 0 0gT f6:5 �4:7 9:0 �15:9gT f187:8 �485:3 �116:1 224:2gT

b¼ f1 0 1 1gT f0:4 13:3 1:1 5:0gT f�11:2 577:5 �245:5 448:2gT

b¼ f1 1 1 1gT f0:0 3:4 5:5 �2:5gT f503:1 �146:5 �473:9 305:1gT

H. Ouyang / Journal of Sound and Vibration 329 (2010) 1985–1991 1989
Secondly, assignment of poles of the asymmetric system (ma0) is made. Complex poles of the open-loop asymmetric
system at mcr, m¼ 0:45 and 0:5 are listed in Table 2 and referred to as ‘original’, referring to the unmodified system. f and g
for assigning the same complex poles of the asymmetric system are given in Table 1. The poles actually obtained (assigned)
are given in Table 2.

Table 2 shows that indeed all poles are assigned precisely, even though the real parts have been changed by relatively a
large amount. In contrast, this is not possible when using structural modifications studied in Ref. [27], which can make
only small changes to the real parts of complex poles of the asymmetric system.

Sometimes it is desirable to locate actuators at certain degrees of freedom. Sometimes it is also interesting to know
whether one actuator would perform better than more. Different actuator distributions represented by various b are
simulated. It is found that all these can assign the desired poles precisely. However, the gains required are very different.
Table 3 shows the values of active damping and active stiffness for assigning the identical poles to the previous ones at
m=0.5.

If one looks at the maximum values in g for different b in Tables 1 and 3, obviously three and four actuators are not as
good as one actuator. It seems that two actuators require the smallest maximum value in g. It is also clear that locating one
actuator to different degrees-of-freedom requires different values of active stiffness and active damping. These results
indicate that it is possible to determine the optimal number of actuators and optimal actuator locations for assigning
complex poles to asymmetric systems using state-feedback control.
3.2. Pole assignment using active damping and active mass

It is found that whatever distributions of actuators, all those complex poles dealt with in Section 3.1 can be assigned
precisely, just like using active damping and active stiffness. The results when using two actuators are given in Table 4.
3.3. Pole assignment using active mass and active stiffness

The coefficient matrix thus formed from Eq. (13) for vectors g and a is ill-conditioned, even for the symmetric system of
m=0. Therefore, it is impossible to assign complex poles using active mass and active stiffness together. This incapability
can be explained in a simple example of a mass–spring–damper system as follows:

m €xþc _xþkx¼ 0 (15)

where m, c, and k are mass, viscous damping, and spring constant, and x is the displacement. The poles of this simple
system are known to be

s1;2 ¼�
c

2m
7 i

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k

m
�

c

2m

� �2
r

(16)
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Table 4

Active damping and mass vectors to assign poles with b¼ f0 0 1 1gT �179i,�1713.5i,�1718i,�1722i at various values of friction coefficients.

m Active damping vector f Active mass vector a

0 f0:99 3:20 1:39 1:32gT f0:09 �0:43 �0:19 �0:35gT

0.3868 f1:70 3:00 2:84 0:22gT f0:30 �0:62 �0:06 �0:41gT

0.45 f1:90 2:87 3:30 �0:19gT f0:36 �0:68 �0:02 �0:44gT

0.5 f2:09 2:74 3:76 �0:63gT f0:41 �0:73 0:02 �0:47gT
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when the system is under-damped. If the poles to be assigned are a7 io, where a and o are prescribed numbers, then one

gets a¼�c=2m and o¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k=m�ðc=2mÞ2

q
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k=m�a2

p
. This leads to

k

m
¼o2þa2 (17)

Eq. (17) indicates that when a pair of poles is assigned, the ratio of k/m is fixed and there is no way of determining k and
m separately. In another word, the equations in k and m will be ill-conditioned or the solutions of mass and stiffness to
assign poles will not be unique.

Finally, although a single input force in state-feedback is used in this investigation, it is expected that multiinput forces
will precisely assign complex poles too. Output-feedback control has been used to assign poles and zeros to symmetric
systems [30]. Its feasibility in assigning poles to asymmetric systems will be studied in near future. Delay can be
introduced in both state-feedback and output-feedback [30].
4. Conclusions

This paper studies the assignment of complex poles to friction-induced vibration problems represented by asymmetric
second-order dynamic systems, using state feedback control of any two of the three means of active mass, active damping
and active stiffness. The inverse method is based on receptances of the symmetric system, which can be directly measured
to avoid modelling errors. It is found using a simple simulated example that active damping and active stiffness together is
capable of precisely assigning complex poles to asymmetric systems for any distributions of actuators and hence stabilising
any unstable poles, and active damping and active mass together is capable of doing the same.

Interestingly, different numbers of actuators at different degrees-of-freedom lead to different values of the active
quantities and hence an optimal solution may be obtained. It is also found that active mass and active stiffness together
cannot be used to assign complex poles to symmetric or asymmetric systems due to ill-condition of the coefficient matrix
of the resultant equations.

It is expected that a multiinput control force of state-feedback, or output-feedback can also precisely assign complex
poles to asymmetric systems. The significance of this work is the theoretical demonstration that in principle flutter type
vibration that easily occurs in asymmetric systems can be suppressed by suitable mean of active control. The physical tests
to demonstrate this capability will be challenging than for symmetric systems as asymmetric systems would normally
involve moving components.
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